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On the synthesis and analysis of protection systems

Lawrence Snyder
Department of Computer Science
Yale University

10 Hillhouse Avenue
New Haven, Connecticut 06520

Abstract:

The design of a protection system for an operating system is seen
to involve satisfying the competing properties of richness and integrity.
Achieving both requires the interplay of analysis and synthesis. Using
a formal model from the literature, three designs are developed whose

integrity (with the help of the model) can be shown.
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QN THE DESIGN AND SYNTHESIS OF PROTECTION SYSTEMS
1. Introduction

In an enumeration of the many properties that a protection system

should have, two distinguish themselves as being especially important:

richness ~ the property of admitting a complex variety of

sharing relationships,

integrity - the property of guaranteeing that the protection
system cannot be compromised even in the most

hazardous of circumstances.

Both properties are important -- a rich system with dubious integrity is

unacceptable, and vice versa. But how are they both to be attained?

It is a difficult task because the two properties are contradicting.
For every feature, restriction, exception, etc., added to achieve richness
during the synthesis phase of design, a complication is introduced into the
analysis phase of validation. We believe that, traditionally, there has
been too much emphasis on synthesis at the expense of analysis. This part-
ly explains why clever systems are so often compromised. It is the purpose

of the present report to show how analysis can be used to guide synthesis.

First the theoretical model will be introduced following [1]. The
model is graphical and quite intuitive. In [l] the model was studied in
some depth and several important properties were proved. These are ox-
plained in section 3. Then in section 4 there are presented three basic
protection system designs based on the model. Finally, in section 5 the

work is discussed together with additional research directions.
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2. Graphical Model of The Take-Grant System
In this section the Take-Grant protection model of [1] is described
¢ 1
(with some modifications ). In order to focus on the role that the model
plays in synthesizing protection systems, the Take-Grant system will be g
presented in purely formal (though quite intuitive) terms in this section Vi
y
3
and the interpretation as a protection model will be postponed until the 1
next section.
‘4
The state of a Take-Grant Protection system is a directed, edge
labelled graph called a protection graph. There are two types of vertices ’

in the protection graph, subjects and objects. (Notationally, filled cir- 4

cles, +, will denote subjects, unfilled circles, °, will denote objects,
and crossed circles, %, will denote either subjects or objects.) The
labels on the edges are called rights and are either {t}, {g}, {t,g} where

"t" and "g" are mnemonic for "take" and "grant."*

Example 2.1:

t g
————__)a.—____._.__’-
tg
| R
g
t jg

A protection graph with three subjects and three objects.

For those familiar with the model, "t" and "g" labels are used

instead of "r" and "w", respectively. The "call" operation has
been dropped from consideration and "remove" has been weakened,

but not materially.

We will generally elide the braces around sets.




A protection graph G is modified to G' by means of rewriting rules.
Rules have the form a => B. When a matches some subgraph of G, the rule
can be applied to G, producing a new graph G' (the operation of applying

a rule r is written G - G').
r

There are four rewriting rules in the Take-Grant Model:

Take: Let x, y, and z be three distinct vertices in a protection graph G
such that x is a subject. Let there be an edge from x to y labeled
¥ such that "t" € y, and an edge from y to z labeled a Then the
take rule defines a new graph G' by adding an edge to the protection

/
)

¢ < *
graph from x to z labeled «a. Graphically,

Grant: Let x, y, and z be three distinct vertices in a protection graph G
such that x is a subject. Let there be an edge from x to y labeled
y such that "g" ¢ y and an edge from x to z labeled a. The grant

rule defines a new graph G' by adding an edge from y to z labeled a.

Graphically,
a a
R N ol ST
X => S 3K
x y z X y z

Credate: Let X be any subject vertex in a protection graph G and let a be
a subset of rights (i.e., a = t, g or tg). Create defines a new
graph G' by adding a new vertex n to the graph and an edge from x

to n labeled a. Graphically,

*
In the rules, a is a variable representing any of the three

possible labels.




Remove: Let x and y be any distinct vertices in a protection graph G 4

such that x is a subject. Let there be an edge from x to y

labeled y, and let a be any subset of rights. Then remove

T S

defines a new graph G' by deleting the a labels from y. If

o

Y becomes empty as a result, the edge itself is deleted.

Graphically,
Y Y a
- X => 3
X y x y

Notice that in the case of take and grant if the edge which is
to be added already exists, the label a is simply unioned with

the label presently assigned to the edge.

Example 2.2: Let G be

tg t
—_—

then

take




ki

v tg t
6 p— e
create 1
subject t = g
© [
n
X Yy t
ofb—— e
remove tg
g g

We say that two vertices, p and q, are connected if there is path between
“hem without regard to directionality. The vertices p and q are

subject connected 1f they are connected by a path whose vertices are only
subjects. We say that for vertices p and q of graph G and a a label then
P can a g meaus that there exists a scquence of graphs GO'Gl”"’Gn such
that ¢ = G, = G. 3 62 et e Gn and in Gn there is an edge from p to g

0 1

with label a.

Theorem 2.1 [l}: Let p, g and r be subject vertices in a protection graph

such that there is an edge from r to g labeled a. Then p can a q if p and

2

q are subject connected.

The proof is given in [2], an example should illustrate the result.

*
Example 2.3: > can take
}

t q tg t g tg
e e e & ]»——-— P P q
th create t
%=
tg

*
Hlere dashed lines are used as a visual aid to indicate the added edge.

i
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take

take

grant

take

- The remainder of this section may be skipped on first reading -

A block in a protection graph G is any maximal subject connected subgraph.

Let p and q be subjects and x X (n*l) be objects such that

ll"'l
p directly connected to Xy

x. directly connected to x,
i i+l

xn directly connected to q,

then p,x, ,x A S is a path. With each such path associate a word

172
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over the alphabet

> > < «
{t,g,t.q}

.

letters correspond to edygd labels in the obvious way, e.g., ° ~> 0

t t g

- - t
is represented by t, and e——>o o< J

O

>e is a path associated p

’ > > < > > > <+ >
with the two words t t g t and t t g g.

Let E be the union of the regular languages defined by

~
e

where A = AA*. A bridge between two blocks exists if from some subject
p in one block there is a path with associated word in E to subject q in

the other block.

Theorem 2.2 [2]: Let G be a protection graph, p and g and r subjects such
that there is an edge from r to q with label a. Then p can a q if and

only if there ecxists a sequence of blocks B.,...,B with p in B

1 K and g in

it

Bk and for i=1,...,i-1 there is a bridge from Bi to B

ol
Notice that when k=1, theorem 2.2 strengthens theorem 2.1 to be "if

and only if."




3. Interpretation of the Take-Grant Model

The development in the last section was presented in graph-theoretic
terms and would be valid in any interpretation of letters. Our goal here

is to interpret the letters in protection terms.

It is assumed that the protection system is a logically separate
entity from the operating system "supervisor” (and thus the supervisor is
subject to its limitations like any other process).* In particular, the
independence of the protection system allows the user to query the system
himself for an audit to verify that certain protection conditions hold.
The protcction graph is a description of the currently extant protection
relationships. Thus, the protection relationships among systems entities
can be changed only by the four rules. The subjects are generally thought
to be "user processes" or components that are "active" from a protection
point of view, while the objects are thought of as files or processes
"known" to be secure. When a subject "applies" a rule (notice that only
subjects can "apply" the rules) it is requesting a modification of the
protection state. Take causes a user to acquire a new right over some
systems entity while grant gives some right away. Create enables new pro-
cesses and files to have their protection configuration added to the system

structure while remove eliminates rights.
Several important facts should be noted about the system:

(3.1) a. take and grant do not create any new rights =-- they morely

+
Here operating system is the totality of the non-user programs

[l

while “supervisor"” refers to the monitor program.
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share existing rights.

b. rights, once removed, can never again be restored.

c. rights, once granted, can never be recovered (i.e., once
rights are granted away, they can be distributed by the

recipient without consulting the grantor).

lition to these obvious properties of the model, the two theorems

‘urther information about what is possible in the Take-Grant systems.

specifically, theorem 2.1 can be interpreted as saying:

"Given a collection of users that are connected, if some
user has a particular right over another user, then every

user can acquire that right."

result suggests, but by no means proves (see below), that the Take-
system is very weak. After all, how can there be any sharing among
if everyone can potentially get the objects that one user intcended
wther? To be safe it appears that users must be unconnected. More-
the sccond theorem does not give much hope, since it implies that in
to “buffer” against some unwanted security leaks there must be at

two objects separating the various user blocks. But once aga'n it is
»ssible to share without the potential of having eveyone acquiring the
3. The Take-Grant System may be an analyzable system, but it doesn't

© to be rich!

[t would be premature to dismiss the system as being too weak. The

'ms indicate what can happen and what cannot happen. In the former

the proofs of the theorems tell how various rights can be acquired

R




when they can be and this is the key to designing a richer system than

would appear possible. This will be shown in the next section. With
the analysis at hand, it is possible to know the consequences on system

integrity of design choices.

4. Take-Grant Systems Designs

In this section, three designs will be presented based on the Take-

Grant model. The focus is on understanding how rich each design is (i.e.,

what information is protected and what is exposed) by employing the analysis

of csection 2 together with the interpretation of section 3.

As indicatcd in the last section, the operating system supervisor is
distinct from the protection system and is thus treated just like any
other subject in the system. Of course, it does have a special role of
joining new uscrs to the system, managing library programs, etc., so con-
siderable interest will be directed toward understandinc how it might per-
torm these functions. Accordingly, the initial configuration and the

protocol followed by the operating system will be of crucial importance.

4.1 General form of user processes

Normally, a user x will be described by the protection subgraph

X
o
t
9 tg
tg
(2 9649
assuming that no sharing is currently active. Here x is the user ard

the objects arc files. To create a subprocess y fo operate on two files

.
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a and b, the user simply perform:s the protection functions

tiz/gl tg create
Krge™ subject y
a b c with tg

l grant y take a

rgrant y take b

Such a user is called a greedy user, since he does not share.

A second gencral user form achievable in the model are the project
users, used, for example, by a group jointly writing a compiler. Here
x is the project leader (created by the system) while y and z are project

workers (created by the project leader) and the graphical representation is

where y and z have created their own files, as does x. O0f course, y and
2's files should be generally available to all who are working on the pro-
ject, and the leader enables mutual access by granting y and z take rights

over each others' files.

-

s a W




With a take y can access z's files and vice versa. Other general user
structures can obviously be envisioned, e.g., instructor - teaching assis-

tant - students, and the reader is invited to design them.

4.2 Theft in the take-grant system

Notice that according to theorem 2.2 y can take rights to c in both
the greedy user and project user structures. Does this mean that y can
take control of a file that x wants to keep secure? Emphatically rot! The
rcason is that y cannot take control of c¢ without x giving the rights away.
Hence, if x wishes to keep it secure, x can choose to do so. This distinc-
tion between what can happen and what might reasonable take place i ab-
solutely crucial to assessing the utility of the take-grant system. It can

be summarized as follows:

Theorem 2.2 defines exactly the protection relations
achievable in an arbitrary state by means (1if necessary)
of the combined effect of all system subjects. A max-
imally rich design with the Integrity property restricts
the achievable relations to those in which the creator

of the information must participate in its dissemination.

With this distinction in mind, various systems designs may now be considered.
We avoid creating arbitrary states and focus instead on "controlling" system

growth.




The designs depend on a simple fact of the Take-Grant Model:

If x is a subject, x has no incoming edge labeled "t"
of "tg", and if the rights to any subject or object
created by x can be acquired by some other subject or
object y, then y can acquire the rights only if x (ini-

tially) grants the rights away.

Thus, subjects satisfying the "no incoming take" requirement can control
what they create. The "initially" caveat is necessary by 3.lc since once

control is relinquished anything may happen.

In cach design the operating system supervisor is the initial subjsct
in the system together with its "service objects", i.e., library files, etc.

Thus ecach of the following systems has as its initial configuration

tg tg tg

where s is the operating system supervisor and the objects are the "service

objects." Notice that no edges are incoming for s, so none will ever be
introduced (by theorem 2.2), so no user will be able to take from the super-

visor.

4.3 Model 1 - Operating system as communications agent

In this design the supervisor communicates with the systems users by
means of an object (thought of, possibly, as a buffer). The users commun-

icate with one another by requesting the operating system supervisor to

act as intermediary.
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The protocol for introducing a new user x to the system is:

a. create subject x with g

b. c¢reate object b with tg -- this is the bu€fer
c. grant x tg to b

d. delete g from x.

Graphically, a system with one user, x, can have a new user x' added as

follws:
tg t¢ tg
a
s
tq//
bb
tgjf
X
[
b

. .

b |

A




tg tg
b ¢ ob'
tg tg

. ex'

Notice that the user must trust the supervisor not to perform step (a)
with grant and take and then to retain the take right since this would
enable the supervisor to take anything created by the user. But if the
user requests an audit from the proL;ction system as its first act of
business, it can be verified that no such rights exist. Notice that no
arrows arc incoming to a user so it can establish a subsystem with the
same features as the overall system -- i.e., the user acts as supervisor

to its subordinates.

Given the configuration (when the service objects have been elided)

s
tg tg
R ob !
tg tg
xe x'
tg tg
co oG’

X can be given rights to ¢' using the following protocols.

subject x subject s subject x

a create object d with tg

(ORIT ) e

—— e .
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:
b grant "tg" tod to b .
c take "tg" to d from b
d grant "tg" to d to b 1
e delete "tg" to d take "tg" to d from b' :
f grant “t" to c' to 4 ;;

g take "t" to c¢' from d

Here d acts as a receptical for the data.

y In step e the operating system yields its right to possibly taking the

data and prior to step f, a paranoid x' could request an audit to verify that
I ¥

o

—

5 ylelds its rights and that the others have followed the protocol.

L T

Whether or not this design is adequate is dependent on the sy:tem's

~§ requirements -- a question that cannot be answered here. However, it should
i be noted that with the supervisor as intermediary there could be a lot of
b |
i traffic. Thus, in an effort to reduce this, a second design is con.sidered.
bl i
1
|
b | 4.4 Model 2 - No agent s .
{ -
i Here the operating system supervisor sets up a buffer (such as b in
1
! Model 1) between cach user pair. Then the sharing responsibilities are
5 . v a2
b placed on the uscrs rather than the supervisor. In addition, the super-
||
‘1 visor must retain grant rights over all of the users in order to establish
the communication. I

e e

The protocol for introducing new users assuming xl,...,xn already

exists is:

ety v s —
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a. create subject y with "g"
b. create object b1 with “tg"

c. grant "“tg" to b, toy

1
d. grant "tg" to b, to x

1 1
o delete "tg" to bl

f. create object bn with "tg"
g. grant "tg" to bn to y

L1} " -
h. grant "tg" to bn to xn

i. delete "tg" to bn

The following configuration results when y is added and Xy and X, erist.

Communication among users is a simple task and is left as an exercise.

The design may reduce the variable cost by eliminating communi -ation
trarfic, but it raises the overhead of the supervisor to be proportional
to the nunber of users in the system. Moreover, the protection system is
swamped with information. If modest sharing among processes is ant.i.cipated,

model 3 might be preferred.

’
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4.5 Model 3 ~ The supervisor as commuirications linkage agent

The obvious solution to the shortcomings of Models 1 and 2 is to
combine the features -- i.e., the supervisor sets up communication buffers
on demand. Thus, the supervisor's work is proportional to the number of
users sharing rather than the amount of sharing. Also, only those links

that are needed are created.

The user crcation protocol for user x is simply

a. create subject x with "g"

when sharing between subjects x and y is required, the protocol for the

supervisor 1is

a. crecate object b with "tg"
b. grant “tg" to be ‘to x
c. grant “tg" tob toy

d. delete "tg" to b.

A sample configuration among four users with two of them sharing might be:

The communication protocol for ﬁhc users is obvious. Notice also that the
users might request an audit once the object b has been created. Moreover,
in this scheme (and in the other models as well) any user can decidc to
isolate himself simply by performing delete. But by 3.1b, he does o in

model 1 at the risk of perpetual isolation.

- ‘,“'4'4-"_"
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5. Discussion

The three models in the last section do not exhaust the
possible designs, nor do they represent necessarily good designs. The
appropriateness of any particular design is contingent on the system's
requirements and these are for the designer to assess. They do show

some alternatives with a certain degree of richness.

The point to be emphasized, however, is that the formal Take
Grant Model provides a means of guiding the synthesis of a design and
it enables analysis of the result. For example, in the forgoing models
no user is ever allowed by the operating systems supcrvisor to have
an incoming edge labeled by t since this would allow the potential of
having rights taken without the user's participation. Should a usern
decide that it desires such rights over its own subsystems, (i.e. the
ability to steal), then it can create them in this manner. If it is
less interventionist than that it could create subsystems after modcls
1-3. In any case the fact that the system has been analyzed and
characterized enables everyone to know the potential consequences of

their actions.

Finally, it should be noted that the Take-Grant Model is not
necessary being advocated here, although it does appear to be uscfu..
What is being advocated is the usc of some formal model in which
information such as that embodied in Theorems 2.1 and 2.2 is Kknown.

This scems the only possible way to achieve integrity.

Accordingly, as future research directions the following can be

suquested:

2. B WS
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Assess the designs discribed here from a richness and an
efficiency of implementation viewpoint

Find alternative designs within the Take Grant Model to achieve
even greater richness

Find extensions to the Take Grant Model which are more exprecssive
with a greater number of rights and/or rules.

Find alternatives to the Take Grant Model to remedy problems not

curable in the forgoing approaches.




Reference

1. A. K. Jones, R. J. Lipton and L. Snyder.

A linear time algoritlm

for deciding security. Proceedings of the 17th FOCS (1976).




